Lidar (ing-gú: Lidar /ˈlaɪdɑːr/, iah kiò-tsò LIDAR, hi̍k-tsiá LiDAR; ū-tang-sî-á kiò-tsò LADAR; Kong-ha̍k luî-ta̍t) sī "Kong-kiám kah tshik-kū"[1] hi̍k-tsiá "kik-kong sîng-siōng, kiám-tshik kah tshik-kū" ê sok-siá.[2] Lidar sī -tsióng tsi̍t thong-kuè iōng kik-kong biâu-tsún bu̍t-thé hi̍k-tsiá piáu-bīn, lî-tshiánn tshik-liông huán-siā-kng huán-tńg--lâi tsiap-siu-khì ê sî-kan lâi khak-tīng huān-uî (pīng-tshiánn ē-tàng kái-piàn kī-lî) ê hong-huat. Lidar ū-tang-sî-á hông kiò-tsò 3-D kik-kong sàu-biâu, sī 3-D sàu-biâu hām kik-kong sàu-biâu ê ti̍k-sû tsoo-ha̍p.[3] Lidar kū-iú tē-bīn, ki-tsài kah î-tōng ê ìng-iōng.[4][5]

Lidar-derived image of Marching Bears Mound Group, Effigy Mounds National Monument
A frequency addition source of optical radiation (FASOR) used at the Starfire Optical Range for lidar and laser guide star experiments is tuned to the sodium D2a line and used to excite sodium atoms in the upper atmosphere.
This lidar may be used to scan buildings, rock formations, etc., to produce a 3-D model. The lidar can aim its laser beam in a wide range: its head rotates horizontally; a mirror tilts vertically. The laser beam is used to measure the distance to the first object on its path.

Lidar thong-siông iōng-teh tsè-tsō ko hun-piān-lu̍t tē-tôo, teh tshik-liông, tāi-tē tshik-liông-ha̍k, tshik-huē-ha̍k, khó-kóo-ha̍k, tē-lí-ha̍k, tē-tsit-ha̍k, tē-māu-ha̍k, tē-tsìn-tōng-ha̍k, lîm-gia̍p, tāi-khì bu̍t-lí-ha̍k,[6] luî-siā tsè-tō [en], "ki-tsài kik-kong ki-tshik-huē" (ALSM) kah kik-kong tshik-kuân. Lidar iah-koh ū iōng-teh bóo tsi̍t-kuá-á tsú-tōng kà-sú khì-tshia[7] ê khòng-tsè hām tō-hâng; í-ki̍p teh hué-tshenn tē-hîng tíng-kuân tshòng-kì-lio̍k hui-hîng ê Ingenuity ti̍t-sing-ki.[8]

Tsù-kái siu-kái

  1. National Oceanic and Atmospheric Administration (26 February 2021). "What is LIDAR". oceanservice.noaa.gov (ēng Eng-gí). US Department of Commerce. 15 March 2021 khòaⁿ--ê. 
  2. Travis S. Taylor (2019). Introduction to Laser Science and Engineering. CRC Press.
  3. Jie Shan and Charles K. Toth (2018). Topographic Laser Ranging and Scanning: Principles and Processing (2nd ed.). CRC Press.
  4. "Adoption of gallium-based lidar sensors gathers pace". www.argusmedia.com (ēng Eng-gí). 2021-06-29. 2021-07-14 khòaⁿ--ê. 
  5. "Ecologists compare accuracy of Lidar technologies for monitoring forest vegetation: Findings suggest mobile platforms have great potential for monitoring a variety of forest attributes". ScienceDaily (ēng Eng-gí). 2021-07-14 khòaⁿ--ê. 
  6. Cracknell, Arthur P.; Hayes, Ladson (2007) [1991]. Introduction to Remote Sensing (2 pán.). London: Taylor and Francis. ISBN 978-0-8493-9255-9. OCLC 70765252. 
  7. Lim, Hazel Si Min; Taeihagh, Araz (2019). "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities". Sustainability (ēng Eng-gí). 11 (20): 5791. arXiv:1910.13122 . doi:10.3390/su11205791. 
  8. "How NASA Designed a Helicopter That Could Fly Autonomously on Mars". IEEE Spectrum. 17 February 2021. goân-loē-iông tī 19 February 2021 hőng khó͘-pih. 19 February 2021 khòaⁿ--ê. 

Ên-sin ua̍t-to̍k siu-kái

  • Gil, Emilio; Llorens, Jordi; Llop, Jordi; Fàbregas, Xavier; Gallart, Montserrat (2013). "Use of a Terrestrial LIDAR Sensor for Drift Detection in Vineyard Spraying". 'nsors. 13 (1): 516–534. doi:10.3390/s130100516. ISSN 1424-8220. PMC 3574688. PMID 23282583.
  • Heritage, E. (2011). 3D laser scanning for heritage. Advice and guidance to users on laser scanning in archaeology and architecture. Available at www.english-heritage.org.uk. 3D Laser Scanning for Heritage | Historic England
  • Heritage, G., & Large, A. (Eds.). (2009). Laser scanning for the environmental sciences. John Wiley & Sons. ISBN 1-4051-5717-8
  • Maltamo, M., Næsset, E., & Vauhkonen, J. (2014). Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies (Vol. 27). Springer Science & Business Media. ISBN 94-017-8662-3
  • Shan, J., & Toth, C. K. (Eds.). (2008). Topographic laser ranging and scanning: principles and processing. CRC press. ISBN 1-4200-5142-3
  • Vosselman, G., & Maas, H. G. (Eds.). (2010). Airborne and terrestrial laser scanning. Whittles Publishing. ISBN 1-4398-2798-2

Tsham-ua̍t siu-kái

  • Khì-siōng gî-khì [en]
  • Atomic line filter – Optical band-pass filter used in the physical sciences
  • Ceilometer – Ground-based lidar for cloud height measurement
  • Clear-air turbulence – Turbulent movement of transparent air masses without any visual cues
  • CLidar
  • Geodimeter
  • Geological structure measurement by LiDAR – Terrain measurement with light beams
  • Laser rangefinder – Range finding device that uses a laser beam to determine the distance to an object
  • LAS file format
  • libLAS – BSD-licensed C++ library for reading/writing ASPRS LAS lidar data
  • Lidar detector
  • List of laser articles
  • National lidar dataset (all countries)
  • National Lidar Dataset (United States)
  • Optech
  • Optical heterodyne detection
  • Optical time-domain reflectometer
  • Photogrammetry – Taking measurements using photography
  • Range imaging – Technique which produces a 2D image showing the distance to points in a scene from a specific point
  • Satellite laser ranging
  • Seafloor mapping#LiDAR
  • SODAR
  • Time-domain reflectometry
  • TopoFlight

Guā-pōo liân-kiat siu-kái

 

Wikimedia Commons téng ê siong-koan tóng-àn: LIDAR