Kiōng-tam choán-tì
(Tùi Hermite kiōng-taⁿ choán--lâi)
"Adjoint" choán koè chia. Chhōe î-im-chú ê choán-tì, khòaⁿ kun-tòe hâng-lia̍t.
Kiōng-tam choán-tì (Hàn-jī: 共擔轉置, Eng-gí: conjugate transpose) sī chiam-tùi hâng-lia̍t ê chi̍t chióng chhau-chok, kán-tan lâi kóng, i pau-hâm chi̍t pái ho̍k-kiōng-tam kap chi̍t pái choán-tì.
Kì-hō kap tēng-gī
siu-káiKì-hō
siu-káiChi̍t ê ho̍k hâng-lia̍t ê kiōng-tam choán-tì, kì-hō ū chiok chē chióng:
- Tī sòaⁿ-sèng tāi-sò͘ tiong, tiāⁿ-tiāⁿ ē siá-chò ia̍h-sī .[1][2]
- Tī liōng-chú le̍k-ha̍k tiong, tiāⁿ-tiāⁿ ē siá-chò , ēng Eng-gí tha̍k-chò “A dagger”.[3]
- Ū sî-chūn ē siá-chò , sui-jiân-kóng chit ê hû-hō khah chia̍p sī piáu-sī Moore–Penrose pseudoinverse.
Tēng-gī
siu-káiê kiōng-tam choán-tì lán ē-sái án-ne lâi tēng-gī: kî-tiong iàu-sò͘ téng-koân chi̍t hoâiⁿ ê ì-sù sī ê ho̍k-kiōng-tam.
Lē
siu-káiKá-sú-kóng lán beh kè-sǹg hâng-lia̍t
ê kiōng-tam choán-tì, lán tio̍h seng sǹg i ê choán-tì:
koh sǹg i ê ho̍k-kiōng-tam:
Miâ-chheng
siu-káiChia-ê mài-chheng ì-sù chha-put-to lóng sio-kâng:
Sèng-chit
siu-kái- Si̍t hâng-lia̍t ê kiōng-tam choán-tì tiō sī i ê choán-tì: .
- Tùi jīm-hô nn̄g ê pêⁿ-tōa ê hâng-lia̍t kap , lán ū .
- Tùi jīm-hô ho̍k-cha̍p-sò͘ kap jīm-hô hâng-lia̍t , lán ū .
- Tùi jīm-hô hâng-lia̍t kap jīm-hô hâng-lia̍t , lán ū . Ài chù-ì, sūn-sī tian-tò-péng ·ah.
- Tùi jīm-hô hâng-lia̍t , lán ū , i.e. kiōng-tam choán-tì sī chi̍t chióng tùi-ha̍p.
Chham-khó khu-liáu
siu-kái- ↑ “conjugate transpose”. planetmath.org. [2020-09-08].
- ↑ 2.0 2.1 2.2 Friedberg, S., Insel, A. & Spence, L. (2018). Linear Algebra (5th Edition). Pearson. ISBN 978-0134860244.
- ↑ 3.0 3.1 Shankar, R. (2012). Principles of Quantum Mechanics (2nd Edition). Springer.